Also See:
NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA | NASA

NASA's Space Shuttle program is an ongoing endeavor, started in the late 1960s, that has created the world's first partially reusable space launch system, and the first spacecraft capable of carrying large satellites both to and from low Earth orbit. Each shuttle is designed for a projected lifespan of 100 launches. The original purpose of the program was to ferry supplies to a space station. In reality, the Shuttle is the United States' sole manned launch vehicle and has totally dominated NASA's operations since the mid 1970s. With the construction of the International Space Station the Shuttle has finally begun to be used for its original purpose. In January 2004, it was announced that the Shuttle fleet would be replaced by 2010.

Table of contents
1 Components
Statistics
3

But there was no way that a space station or Air Force payloads could demand such rates (roughly 1 to 2 per week), so they went further and suggested that all future US launches would take place on the shuttle, once built. In order to do this the cost of launching the shuttle would have to be lower than any other system with the exception of the very small, which they ignored for practical reasons, and very large, which were rare and terribly expensive anyway.

The last remaining debate was over the nature of the boosters. NASA had been looking at no less than four solutions to this problem, one a development of the existing Saturn lower stage, another using "dumb" pressure-fed liquid fuel engines of a new design, and finally either a large single solid rocket, or two (or more) smaller ones. The decision was eventually made on the smaller solids due to their lower development costs (a decision that had been echoed throughout the whole Shuttle program). While the liquid fueled systems provided better performace and enhanced safety, delivery capability to orbit is much more a function of the upper-stage performance and weight than the lower. The money was simply better spent elsewhere.

Worse, any increase in the weight of the upper portion of a lauch vehicle, which had just occurred, requires an even bigger increase in the capability of the lower stage used to launch it. Suddenly the two-stage system grew in size to something larger than the Saturn V, and the complexity and costs to develop it skyrocketed.

The final defining moment was when NASA, in desperation to see their only remaining project saved, went to the Air Force for its blessing. NASA asked that the AF place all of their future launches on the shuttle instead of their current expendable launchers (like the Titan II), in return for which they would no longer have to continue spending money upgrading those designs -- the shuttle would provide more than enough capability.

Space Shuttle Discovery
Space Shuttle Discovery Shuttle Orbiter Discovery (NASA Designation: OV-103) is a NASA Space Shuttle. First flown on August 30, 1984, Discovery is the third operational shuttle (excluding test shuttle 'Enterprise'). The orbiter is still operational today, and has performed both research and International Space Station (ISS) assembly missions. The craft takes its name from a ship used by explorer James Cook. Table of contents showTocToggle("show","hide") 1 Flights 1..1 Related articles 1..2

Space Shuttle Enterprise
Space Shuttle Enterprise The Shuttle Orbiter Enterprise (NASA Designation: OV-101) was the first Space Shuttle built for NASA. It was initially constructed without engines or a functional heat shield and was therefore not capable of space operations without a refit. It was intended to be the second space shuttle to fly after the Space Shuttle Columbia even though it was built first, however, it was found to be cheaper to refit a test article (STA-099) into the Space Shuttle Challenger. Originally planned to be called Constitution, the test vehicle was renamed following a write-in campaign after the starship featured on the television show Star Trek, which in turn was named for the various ships named USS Enterprise. Amusingly, in one of the subsequent Star Trek movies

The Air Force relucantly agreed, but only after demanding a large increase in capability to allow for launching their projected spy satellites (mirrors are heavy). These were quite large, weighing an estimated 40,000 lbs, and needed to be put into polar orbit, which requires more energy to get to than the more common LEO. And since the AF also wanted to be able to abort after a single orbit (as did NASA), and land at the launch site (unlike NASA), the spacecraft would also require the ability to manuver significantly to either side of its orbital track to adjust for the launching point rotating away from it while in polar orbit - in a 90 minute orbit Vandenberg would move over 1,000 miles, whereas in a "normal" equatorial orbit NASA needed the range would be less than 400. This large 'cross-range' capability meant the craft had to have a greater lift to drag ratio than originally planned. This required the addition of bigger, heavier wings.